Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Biomedical Engineering ; (6): 251-261, 2020.
Article in Chinese | WPRIM | ID: wpr-828172

ABSTRACT

With the wide application of virtual reality technology and the rapid popularization of virtual reality devices, the problem of brain fatigue caused by prolonged use has attracted wide attention. Sixteen healthy subjects were selected in this study. And electroencephalogram (EEG) signals were acquired synchronously while the subjects watch videos in similar types presented by traditional displayer and virtual reality separately. Two questionnaires were conducted by all subjects to evaluate the state of fatigue before and after the experiment. The mutual correlation method was selected to construct the mutual correlation brain network of EEG signals before and after watching videos in two modes. We also calculated the mutual correlation coefficient matrix and the mutual correlation binary matrix and compared the average of degree, clustering coefficient, path length, global efficiency and small world attribute during two experiments. The results showed that the subjects were easier to get fatigue by watching virtual reality video than watching video presented by traditional displayer in a certain period of time. By comparing the characteristic parameters of brain network before and after watching videos, it was found that the average degree value, the average clustering coefficient, the average global efficiency and the small world attribute decreases while the average path length value increased significantly. In addition, compared to traditional plane video, the characteristic parameters of brain network changed more greatly after watching the virtual reality video with a significant difference ( < 0.05). This study can provide theoretical basis and experimental reference for analyzing and evaluating brain fatigue induced by virtual reality visual experience.


Subject(s)
Humans , Brain , Physiology , Electroencephalography , Healthy Volunteers , Mental Fatigue , Virtual Reality
2.
Journal of Biomedical Engineering ; (6): 756-764, 2020.
Article in Chinese | WPRIM | ID: wpr-879202

ABSTRACT

Repetitive transcranial magnetic stimulation(rTMS) is a painless and non-invasive method for stimulation and modulation in the field of cognitive neuroscience research and clinical neurological regulation. In this paper, adult Wistar rats were divided into the rTMS group and control group randomly. Rats in the rTMS group were stimulated with 5 Hz rTMS for 14 days, while the rats in the control group did not accept any stimulation. Then, the behavior and local field potentials (LFPs) were recorded synchronously when the rats perform a working memory (WM) task with T-maze. Finally, the time-frequency distribution and coherence characteristics of the LFPs signal in the prefrontal cortex (PFC) during working memory task were analyzed. The results showed that the rats in the rTMS group needed less training days to reach the task correction criterion than the control group (


Subject(s)
Animals , Rats , Memory, Short-Term , Neurons , Prefrontal Cortex , Rats, Wistar , Transcranial Magnetic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL